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The objectives of this study are to determine the most significant parameters 
of Johor River Basin which contribute to river pollution loading and to 
discover the potential contamination of pollutants and perform the process 
capability of water quality. The environmetric techniques and statistical 
process control have been utilize in this study. PCA extracted eight principal 
components which explaining 77% of total variance. The APCS-MLR model 
has revealed NH3-N and PO4 as the main parameter which are main 
pollutants that give highest contribution towards the river. The control 
charts have been established for NH3-N and PO4 by using SPC to monitor the 
level of concentration in a timely manner. Thus, continuous monitoring in the 
area should be done for better improvement of river quality in the Johor 
River Basin. 
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1. Introduction

*River is the vital natural resource living things
especially for the human being (as a substantial role 
in the economic, social, cultural, religious), the 
provision of water supply domestic human 
consumption, irrigation for agriculture, the 
accommodation of transport, industrial use and a 
livelihood to the people. The accomplishment in the 
economic growth and industrialization in Malaysia 
has convinced to environmental problems with ever 
increasing land, air and water pollution (Ho, 1996).  

Anthropogenic influences as well as natural 
processes degrade surface waters and impair their 
use for drinking, industry, agriculture, recreation 
and other purposes (Carpenter et al., 1998). 
Concurrently, the process of industrialization in 
Malaysia has led to economic growth, but at the 
expense of the environment. Water pollution is a by-
product of industrialization of toxic and hazardous 
waste, which was generated by various industries 

* Corresponding Author. 
Email Address: azmanazid@unisza.edu.my (A. Azid) 
https://doi.org/10.21833/ijaas.2017.08.013 
2313-626X/© 2017 The Authors. Published by IASE. 
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

and discharged into the aquatic environment 
(Abdullah, 1995). Changes in the species 
composition and the decline in the overall health of 
aquatic within the river basin have been occurred 
due to the deterioration of water quality (Durell et 
al., 2004).  

Environmetric is an advanced multivariate 
analysis that is rooted for the assessment of the 
environmental database (Juahir et al., 2010a; Nasir 
et al., 2011; Zali et al., 2011; Dominick et al., 2012). 
Apart from that, environmetric is also exhibited as a 
division of environmental analytical chemistry that 
requires multivariate statistical modeling and data 
treatment known as chemometric analysis 
(Simeonov et al., 2002; Brodnjak-Vonˇcina et al., 
2002; Simeonov et al., 2004; Felipe-Sotelo et al., 
2007; Kowalkowski et al., 2006; Pere’-Trepat et al., 
2006; Osman et al., 2012; Saim et al., 2009; Gazzaz et 
al., 2012; Retnam et al., 2013). This quantitative 
technique is suitable for all aspects of the social and 
natural environment, including forecasting, 
mathematical modeling, data analysis and statistics 
(Juahir et al., 2010b; Nasir et al., 2011). Principal 
Component Analysis (PCA) is one of the most utilized 
tools in the environmetric (Shrestha and Kazam, 
2007; Krishna et al., 2009; Juahir et al., 2011; Nasir 
et al., 2011; Dominick et al., 2012). According to 
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Shrestha and Kazama (2007), data obtained were 
subjected to different multivariate statistical 
approaches: (i) to define geogenic and 
anthropogenic origin, (ii) to identify possible non-
point sources of contamination and (iii) to estimate 
the contributions of possible sources on 
concentration of determining parameters (Krishna et 
al., 2009). In fact PCA can identify several pollution 
factors reasonably, but the interpretation of these 
factors in terms of actual controlling sources and 
processes are highly subjective (Liu et al., 2003). 

Multiple Linear Regression (MLR) is a 
multivariate statistical technique that was often 
applied in a particular study in order to predict 
relationships between input and output variables 
without detailing the causes of these relationships 
(Dominick et al., 2012). On the contrary, MLR has 
also been carried out in order to measure the 
relationship between the independent and 
dependent variable (Guille´n-Casla et al., 2011; 
Dominick et al., 2012). Consequently, it is 
recommended to define the percent contribution of 
different sources for the application of MLR to the 
PCA scores (Wu et al., 2009). Apart from that, a study 
conducted by Wang et al. (2009) showed that an 
analysed data set by using PCA followed by MLR was 
prominent in order to provide understanding into 
the precision and quantification of source apportion. 
The combination of PCA and MLR is known as the 
Absolute Principle Component Score-Multiple Linear 
Regression (APCS-MLR) model. This technique was 
applied in order to determine the contribution of 
each possible sources defined by PCA (Zhou et al., 
2007; Nasir et al., 2011; Su et al., 2011a; 2011b). 
Hence, it is proven that the utilization of APCS-MLR 
are capable in the identification of the possible 
source contributions in each physicochemical 
(Simeonova et al., 2003). Furthermore, APCS-MLR 
was applied to calculate the source of contributions 
after determining the number and characteristics of 
possible sources by PCA (Zhou et al., 2007).  

Statistical Processing Control (SPC) has been used 
widely in the monitoring, manufacturing processes 
and service operations (Woodall et al., 2000). Madu 
(1996) also explained the feasibility of control charts 
in environmental monitoring. The justification of 
Maurer et al. (1999) on the empirical analysis of SPC 
in sediment pollutant analysis using control charts 
rule supported the statement in Madu (1996). The 
statement by Maurer et al. (1999) stated that 
although SPC was primarily developed for the 
industrial purposes, this methodology can also be 
used in environmental discipline. The limitation of 
using SPC in environmental monitoring is depending 
on the higher sampling frequency in an attempt to 
identify the developing trends, moreover the use of 
this tool also requires increased sampling frequency 
in order to reflect the system or scale that are being 
monitored (Maurer et al., 1999). Corbett and Pan 
(2002) encouraged the practitioners to link the 
theories of SPC in the environmental data to evaluate 
the environmental performances. Most studies in 
SPC have been carried out in a small number of areas 

especially in environmental discipline. This is 
because the techniques in modern statistical process 
control charts and related methods are still 
remaining unknown to most of the environmental 
personnel (Corbett and Pan, 2002). In fact, the 
application of control charts and process capability 
provide a promising tool in the environmental realm, 
on the word of Corbett and Pan (2002). Therefore, 
SPC techniques are important to identify the risk of 
the environment in the future. Researchers studied 
on the SPC techniques in environmental data may 
find that the limitations in SPC are due to insufficient 
data for control charts to decide (Maurer et al., 
1999). This study, however, attempts to provide a 
profound understanding of the capabilities of each 
tool in SPC. Despite that, this study also aims to 
provide an insight on the control charts and process 
capabilities in order to capture a better analysis and 
interpretations out of the outcomes particularly 
concerning the environmental realm. As stated by 
Besterfield (2009), the SPC has comprised with 
many tools such as Pareto Diagram, cause and effect 
diagram, check sheet, process flow diagram, scatter 
diagram, histograms and control charts. In addition, 
the control charts are implemented for process 
stability; where the process is stable if there is no 
out-of control point and the process is not stable 
when there is out of control points (Woodall et al., 
2000). Theoretically, the phase 1 of the applications 
in the control charts usually considered any-out of 
the control points of the chart and in phase 2, the 
probability of a signal on any one sample is 
occasionally used if the successive statistics plotted 
are independent (Woodall et al., 2000). The error of 
false positive and false negatives is balanced by SPC 
meanwhile data from a base period is used to 
construct the control limits. Consistent with Madu 
(1996), any process involved has its variation and 
the two causes of variation is known as chance 
(natural) and assignable cause of variation. The 
control charts are aiming to identify and eliminate 
special cause so that only random causes of variation 
are retained in the system to ensure the stable 
process (Madu, 1996). 

Malaysian rivers can be classified as Class IIB/III 
Rivers (Abdullah, 1995; Juahir et al., 2010a; Al-
Mamun and Zainuddin, 2013). The secondary data of 
Johor River Basin were acquired from the 
Department of Environment Malaysia (DOE). The 
data were selected for evaluation for the year of 
2003 to 2007. A total of 30 water quality parameters 
notably as the dissolve oxygen (DO), biological 
oxygen demand (BOD), chemical oxygen demand, 
(COD), suspended solid (SS), pH, ammoniacal 
nitrogen (NH3-N), dissolved solid (DS), total solid 
(TS), nitrate (NO3), chloride (Cl), phosphate (PO4), 
Escherichia Coli (E.Coli), coliform and also various 
types of heavy metal parameters.. The objectives of 
this study are to determine the most significant 
parameters of each river basin which contribute to 
river pollution loading and to discover the potential 
contamination of pollutants and perform the process 
capability of water quality. All the data are analysed 



Samsudin et al/ International Journal of Advanced and Applied Sciences, 4(8) 2017, Pages: 84-97 

86 
 

using the following software; the software is 
packaged XLSTAT 2012 and SPC XL software.  

2. Experimental study 

2.1. Study area 

Johor River is also known as one of the largest 
catchment area in the southern part of Peninsular 
Malaysia with a total catchment area of 2751.72 km2 

(Dorofki et al., 2012). The river flows towards the 
north of the basin from the Bukit Gemuruh (at an 
altitude of 109m) and Gunung Belumut (at an 
altitude of 1,010m) (Kia et al., 2012). The Johor River 
originates from its source of Layang-Layang River 
and Sayong River in the upstream area before 
merger into the Johor River and flows down towards 
the southeast of the Johor Straits estuarine. The 
major tributaries that are located at the downstream 
of the Johor River are the Tiram and Lebam River 
(DID, 2000). In fact, the main tributaries that 
diverged the Johor River are Sayong, Linggiu, Tiram 
and Lebam Rivers as shown in Fig. 1 and Table 1. 
The water temperature of the river is ranging from 
21°C to 32°C. Based on Kia et al. (2012), Johor River 
is rich with its magnificent beauty of the natural 
forest and swamps that covers almost the major 
proportion of the landuse. Whereas, the southern 
part of the basin is mostly covered by the oil palm 
and rubber plantations. The main cities that are 
located adjacent to the Johor River basin are the Kota 
Tinggi with a total human population of 220000 
people. The total catchment area of the Johor River 
at Kota Tinggi is approximately 1620 km2 and the 
major land use in the Johor River basin are mainly 
conquered by oil palm plantations, other types of 
crop cultivations, urbanization, water body and 
swamps (Kia et al., 2012). 

2.2. Pre-processing data 

Preliminary work was undertaken in the data 
matrix that included assembly and data 
transformation. The data below the detection limit 
were substituted with values equal to half the 
detection limit. Normal distribution tests were 
carried out with the support of the W (Shapiro-Wilk) 
test; the agreement of the distribution of the 
physico-chemical parameters of water with normal 
distribution was tested (Sojka et al., 2008; Juahir et 
al., 2011; Samsudin et al., 2011). Standardization 
was applied to upturn the influence of variables 
whose variance is small and conversely. Log scaling 
is very common in environmental data since some of 
the variables might show very low or very high 
values.  

2.3. Principal component analysis (PCA) 

Principal Component Analysis (PCA) used on the 
normalized data set to observe in contrast of the 
compositional pattern among the analyzed water 

quality parameters (variables) and to recognize the 
factors that influence each of the parameter 
(Dominick et al., 2012). The new variable which is 
knows as Principal Components (PCs) are the linear 
combinations of the original set of variables (Sousa 
et al., 2007; Dominick et al., 2012). The PCs can be 
expressed by Eq. 1 (Dominick et al., 2012): 

 

yij = b1ix1j + bx2j+. . . +bmixmj,                          (1) 
 

where y is a component score, b is the component 
loading, x is the measured value of the variable, i is 
the component number, j is the sample number, and 
m is the total number of variables.  

The covariance matrix was diagnosed and 
Eigenvalues are produced which is known as a 
characteristic root (Vega et al., 1998). This analysis is 
based on eigenvalue criteria by which a value >1 is 
deliberate significant, and a new group of variables 
was produced based on the similarity of the entire 
data set (Osman et al., 2012). Factor loading gives 
the correlation between the original variables and 
the VFs, while the individual transformed 
observations are called factor scores (Vega et al., 
1998). The VF coefficients having a correlation 0.49–
0.30 are considered ‘weak’ significant factor 
loadings, correlations in the range of 0.74–0.50 are 
considered ‘moderate’ and those in the range of 
>0.75 are considered ‘strong’ (Liu et al., 2003; 
Retnam et al., 2013). 

2.4. Statistical process control 

Primarily, the x and R chart is one type of a 
control chart that have a subgroup size of more than 
two groups that is coupled together in the SPC 
(Maurer et al., 1999; Douglas, 2009; Besterfield, 
2009). Both charts are usually computed in order to 
determine either the process is stable and 
predictable. According to Douglas (2009), the control 
chart often display the average changes over time 
while the R-chart present the range of subgroups 
changes over time. The x and R charts are used 
throughout any processes having a subgroup size 
greater than one where the size may fall between 
two and ten. 

Supposedly, a quality characteristic is normally 
distributed with mean (µ) and standard deviation 
(σ), where both the values of µ and σ are known. x is 
normally distributed with mean µ and standard 
deviation σx =  σ

√n
. 

Besides, the probability is 1 – α that any sample 
mean may fall between Eq. 2 (Douglas, 2009): 

 

µ + Zα

2
 ax  =  µ +  Zα

2
 

α

√n
 and µ − Zα

2
 ax  =  µ +  Zα

2
 

α

√n
.   (2) 

 

Therefore, this equation could be used as an 
upper and lower limit. The x represent as the 
average of each sample, while µ is represented as the 
best estimator and the grand average x̿ is the process 
average in Eq. 3 (Douglas, 2009):  

 

x̿ =  
x1+ x2+⋯+ xm

m
,                                          (3) 
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where x an average of the sample and m is the 
number of subgroups. Meanwhile, x̿ is represented 
as the center line on the x chart.  

Principally, the control chart is only accountable 
as completed when there is an upper control limit, 
central line and lower control limit which facilitate in 
the determination whether the process is stable or 
not (Besterfield, 2009). Generally, the formulas for 
constructing the control limits on the x chart are 
described in Eq. 4 (Douglas, 2009) as follows: 

 
UCL =  x̿  +  A2R   
Center Line =   x̿                                (4) 

LCL = x̿  + A2R  
 

Nevertheless, the range method is often used in 
constructing the control limit chart where the 
process variability is monitored by plotting the 
values of the sample range R on a control chart.  

The range of the sample is the difference between 
the largest and smallest observations in Eq. 5 
(Douglas, 2009): 

 
R =  xmax –  xmin                        (5) 

 
where the R1, R2,…., Rm is the range of the m 
samples. The average range is computed using the 
following expression in Eq. 6 (Douglas, 2009): 

 

R  =  
R1+ R2+⋯+ Rm.

m
,                              (6) 

 
whereas, the centerline and control limits of the R 
chart are given as follows in Eq. 7 (Douglas, 2009): 

 
UCL = D4R  
Center Line =  x̿.                                       (7) 

LCL = D3R  
 

The constants D3 and D4 are tabulated for 
various sample sizes in the table of factors in the 
construction of variables control charts. In fact, the 
application of x and Rconsist of 3 phases; trial 
control limits, revise trial control limits and new trial 
control limits (generally are tighter than the first 
trial control limits). The trial central line is 
established for the x and R charts by using the 
following Eq. 8 (Douglas, 2009): 

 

x̿  =  
∑ = 1xs

u k

s
  R  =  

∑ = 1Rs
u k

s
 ,                      (8) 

 
where x̿ is the average of the subgroup averages, xk 
is the average of the kth subgroup is the number of 
subgroups. R̅ is the average of the subgroup ranges 
while R̅k is the range of the kth subgroup. 

The trial control limits for the charts are 
constructed on ±3σ (standard deviations) from the 
central value. This is presented based on the 
following Eq. 9 and Eq. 10 (Douglas, 2009): 

 

UCLx̿  =   x̿  +  3x̿  
LCLx̿  =    x̿  −  3x̿,                                                                         (9) 
UCLR̅  =   R̅  +  3R̅  
LCLR̅   =  R̅   −  3R̅,                                                                     (10) 

where UCL = upper control limit, LCL = Lower 
control limit and σx̿ ispopulation standard deviation 
of the subgroup averages (Douglas, 2009; 
Besterfield, 2009).  

According to Besterfield (2009), in SPC, the most 
crucial phase is the establishment of the revised 
central line and control limits. The standard values 
for the central lines are implemented in order to 
unleash the best estimate for the available data. x̿ 
and R̅ are considered as a representative of the 
process and positioned as the standard values for x₀ 
and R₀ once the analysis indicates as ‘good controls’ 
on the preliminary data (Douglas, 2009; Besterfield, 
2009). No out-of control points on both sides of the 
central line are depicted and no unusual patterns of 
variation are categorized in better control process. 
At this stage, only the out-of-control points are 
analysed for the determination of the process 
stability (Douglas, 2009; Besterfield, 2009). In the 
process, if there is an assignable cause the out-of-
control points can be discarded. The out-of -control 
state are most commonly due to the chance caused 
that may occur as a part of natural variation. 
Therefore, the data may still remain in the system.   

As stated by Douglas (2009), when the data is 
discarded, the 3rd phase as the new x̿ and R̅ is 
calculated by the simplified calculations that is 
displayed as follows Eq. 11 and Eq. 12; 
 

x̿new =  
∑ x−xb

s−sb
,                                                         (11) 

R̅new =
∑ R−Rb

s−sb
,                                                                   (12) 

 

where xb represent as the discarded subgroup 
averages, sb is the number of discarded subgroups 
and Rb represents the discarded subgroup range. 
The initial 25 subgroups are not plotted with a 
revised control limit as it is used to report the results 
for future subgroups (Douglas, 2009; Besterfield, 
2009). 

2.5. Capability index 

The process capability analysis is generally an 
approach that is used in order to assist decision 
makers in making decision either the process is 
proficient of complying to the existing 
environmental legislation or benchmark that have 
been set for a sufficiently large proportion of time 
(Corbett and Pan, 2002). The capability index is also 
known as a measure of the stable and predictable, 
which has been showcased in the control charts. On 
the other hand, it is also referred as a measure of the 
process capability which is termed as the capability 
ratio that are symbolized by the Process Capability 
(Cp) which is a necessary complement to a variables 
control chart. Process Capability Index (Cpk) is used 
in the capability index in order to measure the centre 
of the target or nominal value where a minimum 
value that is normally recommended for Cpk is 1.00 
in the control chart (Douglas, 2009; Besterfield, 
2009). However, when the Cp value is 1.33 or reach a 
greater amount, the operating personnel are 
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responsible to maintain the process centered, stable 
and predictable (Douglas, 2009). The process 
capability and tolerance are combined to form a 
capability index as defined in the following Eq. 13: 

 
Cp= 

USL−LSL

6σ0
,                   (13) 

 
where Cp is the capability index, USL – LSL 
represents the upper specification limit substitute by 
the lower specification limit or tolerance and 6σ0 
refers to the process capability. Nevertheless, when 
the capability index is 1.00, it is considered most 
commonly categorized as Case (II) situation and if 
the ratio is greater than 1.00, it will be referred as 
Case (I) situation which is desirable and if the ratio is 
less than 1.00, it will be considered as Case (III) 

situation which is known as undesirable (Douglas, 
2009; Besterfield, 2009). 

Consistent with Besterfield (2009), this case 
situation will differentiate the output of the control 
processes to the specification limits. In spite of that, 
the process spreads pertains as the process 
capability and equal to 6σ meanwhile tolerance is 
the difference between specifications. Unfortunately, 
undesirable result may be obtained accordingly 
whenever the tolerance is established without 
regard to the process. There are three possible 
situations that may occur and this explains the 
situation case (I) when the process capability is less 
than the tolerance, (II) when the process capability is 
equal to the tolerance and (III) when the process 
capability is greater than the tolerance (Douglas, 
2009).  

 

 
Fig. 1: Map of Johor River Basin 

 

3. Result and discussion 

3.1. PCA 

PCA of the entire data set in the Johor River Basin 
(Table 2) elucidated eight PCs with eigenvalues 
greater than one explaining 77% of the total 
variance in the water-quality data set. The first 
factor (VF1) indicates 30.3% of the total variance 
with strong positive loadings of COND., SAL, DS, TS, 
Cl, As, K, Mg and Na. These variables are derived 
from the mineral component that is available in the 
river. This finding is consistent with Vega et al. 
(1998) which stated that this group of variables is 
the common origins of minerals that are more likely 
induce from the dissolution of limestone and 
gypsum. Moreover, the seasonal factor such as rain 
may also affect to the soil infiltration process and 
transported the pollutants into the river through the 
surface runoff. On the contrary, VF2 stipulated 

11.9% of the total variance with the strong positive 
loading of BOD, COD, SS and turbidity. This VF 
represents as the anthropogenic activity that is 
incorporated from the industrial, domestic and 
commercial areas. The association among these 
variable (BOD, COD, suspended solid and turbidity) 
are corresponded due to the discharge of organic 
source and sewer pipes effluents which contain 
pollutants with high concentration of bacteria (Mohd 
et al., 2011). VF3 accounted for 9.91% of the total 
variance with strong positive loadings of NH3-N and 
PO4. This variable is suggested to come from 
agricultural runoff pollution sources. The presence 
of NH3-N and PO4 in the water system might be 
resulted by the runoff and soluble fertilizer that is 
used in the oil palm plantation industry. This is 
consistent with Singh et al. (2005) which stated that 
the usage of nitrogenous fertilizer increases the level 
of NH3-N and PO4. In fact, nitrogenous fertilizer is 
widely used in crop cultivations in order to boost the 
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plants growth by providing enough nutrients for the plants to perform photosynthesis. 
 

Table 1: The information of the monitoring stations on Johor River Basin 
LONGITUDE LATITUDE STA No. RIVER LOCATION 

E 103° 54.801’ N 01° 33.294’ J1 LAYANG Wastewater Treatment Plant SAJ Sultan Iskandar, Masai 
E 103° 58.257’ N 01° 32.273’ J2 SERAI Keck Seng, Kong-Kong Estate 
E 103° 52.982’ N 01° 35.071’ J3 TIRAM Kg.Sg. Tiram,Ulu Tiram Bridge 
E 103° 47.418’ N 01° 37.312’ J4 TIRAM Bridge near Kilang Getah Skellerup, UluTiram. 
E 103° 46.599’ N 01° 38.200’ J5 TIRAM Bridge in Kulim, Ulu Tiram Estate 
E 103° 49.358’ N 01° 35.858’ J6 TIRAM Ulu Tiram Town's Bridge 
E 103° 39.104’ N 01° 44.746’ J7 BKT. BESAR FELDA Estate at Taib Andak, Kulai 
E 103° 42.873’ N 01° 44.288’ J8 SEMANGAR Sg. Semanggar jalan Sg.Sayong-Bdr. Tenggara Bridge 
E 103° 42.725’ N 01° 44.624’ J9 BKT. BESAR Sg.Bkt.Besar jalan Sg.Sayong-Bdr, Tenggara Bridge 
E 103° 44.458’ N 01° 47.010’ J10 JOHOR Kg. Rantau Panjang near FELDA Bkt. Ramun Jetty 
E 103° 46.807’ N 01° 44.944’ J11 JOHOR Sg.Johor Kg. Semanggar  Bridge 
E 103° 48.403’ N 01° 43.602’ J12 TELOR Kg. Sg. Telor jln Kulai-Kota Tinggi Bridge 
E 103° 52.587’ N 01° 41.199’ J13 BERANGAN Tai Tak, K/Tinggi estate near effluent pool 
E 103° 51.509’ N 01° 44.636’ J14 JOHOR Kg. Sg. Telor Fishing Jetty 
E 103° 54.022’ N 01° 43.555’ J15 JOHOR Kota Tinggi Town Bridge 
E 104° 01.392’ N 01° 40.155’ J16 TEMOH Felda Air Tawar 2, K/Tinggi Bridge 
E 104° 03.145’ N 01° 33.666’ J17 LAYAU KIRI Road to Kg.Baru, Sg.Layau-Ldg. KimLoong K/Tinggi. 
E 104° 07.106’ N 01° 34.589’ J18 SEMENCHU FELDA Estate at Semenchu, K/Tinggi. 
E 104° 12.508’ N 01° 33.918’ J19 CHEMANGAR Sg. Chemangar near Bdr.Penawar Bridge 
E 104° 11.174’ N 01° 33.333’ J20 LEBAM Behind KKS FELDA Adela, K/Tinggi. 
E 104° 11.896’ N 01° 27.284’ J21 SENING FELDA Estate at Sening, K/Tinggi. 
E 104° 07.520’ N 01° 24.544’ J22 SANTI Marine Police, Pengerang Jetty 
E 103° 32.862’ N 01° 45.993’ J23 ANAK SG. SAYONG Kg. Murni-Layang-Layang Road's Bridge 
E 103° 31.228’ N 01° 48.196’ J24 SAYONG Sg.Sayong bridge road to lading MCA, Layang-Layang 
E 103° 28.143’ N 01° 49.227’ J25 SAYONG Sg.Sayong bridge near Layang-Layang town 
E 103° 28.891’ N 01° 49.942’ J26 REMIS Bridge at golf field near Ulu Remis' Estate, Layang-Layang 
E 103° 24.264’ N 01° 53.233’ J27 SAYONG near to railway at Renggam Town 
E 103° 35.562’ N 01° 51.424’ J28 PENGGELI Bridge near to SAJ Bandar Tenggara WTP 
E 103° 40.170’ N 01° 50.350’ J29 SEBOL Sg. Sebol jalan Bdr. Tenggara-K/Tinggi Bridge 
E 103° 42.718’ N 01° 50.855’ J30 LINGGIU Sg. Linggiu jalan Bdr. Tenggara-K/Tinggi Bridge 
E 103° 37.624’ N 01° 49.243’ J31 PENGGELI JPS telemetric station to FELDA Inas 
E 103° 39.208’ N 01° 48.884’ J32 ANAK SG. SAYONG FELDA Estate at Penggeli Timur, Bdr.Tenggara. 
E 103° 40.171’ N 01° 48.212’ J33 SAYONG Bridge near to SAJ Sg. Sayong WTP 
E 104° 08.513’ N 01° 36.123’ J34 PAPAN Sg. Papan bridge near to FELDA Sg.Mas, K/Tinggi 
E 103° 57.437’ N 01° 41.667’ J35 SELUYUT Sg. Seluyut, Kg.Sinaran jetty near to Felda Air Tawar 3, K/Tinggi. 
E 103° 50.086’ N 01° 49.746’ J36 PELEPAH Sg. Pelepah near to  Kota Tinggi Water Fall 
E 103° 52.409’ N 01° 44.818’ J37 PANTI Sg. Panti, Kg.Panti, KotaTinggi bridge 
E 103° 33.230’ N 01° 48.413’ J38 BELITONG Bridge at GSA Sg. Belitong Enam, Layang-Layang 
E 103° 52.338’ N 01° 44.833’ J39 PELEPAH Sg. Pelepah, Kg. Panti, Kota Tinggi Bridge 

 

Unfortunately, if the plants are over dose with 
nitrogenous fertilizer, it may stimulate to the 
transportation of alkaline and nitrates that are 
contained in the fertilizer into the overlying water. 
Hence, the people that consume the water may 
prone to sickness such as hypoxia. The fourth factor 
(VF4) signifies for 6.52% of the total variance with 
the strong positive loading of E-coli and coliform. 
This factor represents as the association of variables 
in the fecal waste. This is because the presence of E-
coli and Coliform often incorporated as a strong 
indication of sewage discharge into the surface 
water. This finding is also confirmed by Mohd et al. 
(2011) which suggested that the E-Coli and Coliform 
is suspected to be originated from the animal faeces, 
surface runoffs and discharge from the sewage and 
wastewater treatment plants. Whereas the fifth 
factor (VF5) explains 4.24% of the total variance 
with the strong positive loading of Zn. Initially, Zn is 
an element that is commonly utilized in the 
manufacturing industry that includes transportation, 
construction, machinery and electricity. Moreover, 
Zn is also used as an activator in the rubber and 
paint industries. In fact, the white pigment subsists 
in the water colours or paints are resulted by the 
touch of zinc oxide in the colour mixtures. In spite of 
that, VF6 accounts for 3.67% of the total variance 

signifying Cd as the strong positive loading. In 
general, the generation of Cd in the environment is 
largely influenced by the manufacturing industries 
(OSHA). It mainly produces Cd for pigments, coating 
and plating and as a stabilizer for plastic. In fact, Cd 
also consists in the manufacturing industries as an 
inevitable byproduct of Zn, Pb and Cu extraction 
(Lenntech, 2014). VF7 exhibit 3.7% of the total 
variance with strong positive loading of Fe. Fe is 
known as one of the most abundant elements in the 
earth's crust. Nonetheless, Fe is also found as a 
source metal in the steel and alloy production 
(Lenntech, 2014). In general, Fe is usually 
corresponded to the industrial effluents due to its 
capability to exist in four distinct crystalline forms as 
described in the periodic table (Juahir et al., 2010b; 
Nasir et al., 2011; Lenntech, 2014). Hence, these 
three factors (VF5, VF6 and VF7) indicate as a 
coherent group of metals association which suggests 
that these factors are a symbol of anthropogenic 
activities. The eighth factor (VF8) signifies NO3 as the 
strong positive loading which exhibit 4.6% of the 
total variance. Primarily, the sources of nitrogen in 
water were contributed by various types of pollution 
sources which this include animal wastes (livestock, 
birds, mammals and fish), feedlot discharges, 
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municipal and industrial wastewater, fertilized field, lawn runoff, septic tanks and vehicle exhausts. 

 
Table 2: Loadings of eight Varimax Factors (VFs) of Johor River Basin 

 
VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8 

DO -0.284 -0.137 -0.495 -0.301 -0.031 -0.091 -0.2 -0.295 
BOD -0.006 0.752 0.511 -0.005 0.065 0.009 -0.035 -0.055 
COD 0.01 0.92 0.257 -0.018 -0.028 0.019 -0.094 0.002 

SS -0.005 0.972 -0.005 0.058 0.027 -0.011 0.046 0.009 
pH 0.217 0.043 0.544 0.085 -0.464 -0.038 0.227 0.086 

NH3-NL -0.038 0.187 0.86 0.121 0.101 -0.02 -0.045 -0.004 
TEMP 0.408 -0.037 0.132 -0.043 -0.333 0.381 0.1 -0.233 
COND 0.994 -0.016 0.025 0.001 0.006 0.006 -0.005 -0.015 

SAL 0.994 -0.015 0.015 -0.003 -0.001 0.004 -0.01 -0.012 
TUR -0.043 0.948 -0.031 0.083 0.054 -0.012 0.141 0.019 
DS 0.994 -0.015 0.023 -0.009 0.006 0.006 -0.006 -0.013 
TS 0.975 0.023 0.023 -0.005 0.013 0.004 -0.003 -0.014 

NO3 -0.077 0.006 0.096 -0.069 -0.023 -0.083 0.027 0.716 
Cl 0.99 -0.017 0.004 -0.011 0.001 0.007 -0.006 -0.02 

PO4 -0.03 0.302 0.743 -0.041 0.122 -0.029 -0.033 0.055 
As 0.808 -0.007 0.002 0.005 -0.086 -0.026 -0.061 0.064 
Cd -0.031 0.004 -0.068 -0.011 0.141 0.771 0.007 -0.011 
Cr 0.136 -0.03 0.518 0.212 -0.137 -0.001 -0.021 0.566 
Pb -0.031 -0.009 0.023 -0.029 -0.085 0.545 -0.071 -0.001 
Zn 0.1 0.138 0.187 -0.07 0.765 0.109 0.042 -0.039 
Ca 0.976 -0.008 0.058 0 -0.004 0.001 -0.002 0.021 
Fe -0.166 0.192 0.021 0.165 0.192 -0.038 0.627 0.186 
K 0.713 0.073 0.604 0.047 0.026 -0.008 0.015 0.129 

Mg 0.978 -0.011 0.039 -0.009 0.005 0.003 -0.011 0.002 
Na 0.99 -0.02 -0.01 -0.015 -0.004 0.006 -0.006 -0.013 
OG -0.012 0.003 0.027 0.298 0.082 0.121 0.149 0.456 

MBAS 0.061 0.02 0.283 -0.002 0.376 -0.106 0.419 -0.343 
E-coli -0.022 0.055 0.07 0.902 -0.005 -0.018 0.013 -0.015 

Coliform -0.028 0.064 0.077 0.916 -0.048 -0.005 0.026 0.057 
Eigenvalues 9.474 4.58 2.391 1.705 1.259 1.124 1.035 1.015 

Variability (%) 31.061 11.59 9.914 6.516 4.235 3.667 3.686 4.601 
Cumulative % 31.061 42.651 52.565 59.081 63.316 66.984 70.67 75.27 

Note: Values in bold indicate the variables has strong loading >0.75 and value underline indicate the moderate loading 

 
In the environment, NO3 often provides nutrients 

for the plants in streams, rivers, and reservoirs. In 
fact, the nitrate levels in the river water often 
fluctuate due to the seasonal factor and higher 
nitrate concentration are usually observed during 
the rainfall season (Ismail, 2011). Therefore, this 
clearly indicates that the generation of NO3 is 
resulted by the surface runoff that transported land 
surface particulates into the overlying water. The 
summarization of all the possible pollution sources 
in the Johor River Basin is described in Table 3. 

 
Table 3: Summary of possible pollution sources for Johor 

River Basin 
Parameter Possible Pollution Sources 

VF1 : Cond, Sal, DS, TS, Cl, As, K, 
Mg, Na 

Mineral component 

VF2 : BOD, COD, SS, TUR Industrial and man activity 
VF3 : NH3-N, PO4 Agriculture 

VF4 : E-coli, Coliform Sewage 
VF5 : Zn Paint/Rubber Industry 
VF6 : Cd Rubber/Plastic Industry 

VF7 : Fe 
Abundant element in earth 

crust 
VF8 : NO3 Livestock manure 

3.2. APCS-MLR 

The results revealed that the APCS-MLR model 
for Johor River exhibited R2 equivalent to 0.780 
indicating a good fit between the measured and 
predicted concentration as this is described in Table 
4. The coefficient of determination (R2) value clearly 

indicate that there is a strong correlation between 
the goodness of the receptor modeling approach 
(APCS-MLR) and the source apportionment of the 
water variables. Moreover, the APCS-MLR has 
managed to distinguish VF3 as the highest 
percentage of contributory with 71.68% of the 
possible pollution (Table 5). This clearly indicates 
that NH3-N and PO4 that are influenced by the 
agricultural runoff are depicted as the major 
pollution sources in the Johor River Basin. 
Fundamentally, there are numerous agricultural and 
livestock activities that have been carried out in the 
development areas adjacent to the Johor River Basin. 
The point source and non-point sources of the 
pollutants include water runoff from the cropland, 
lawns, gardening and confined livestock that may be 
the reason of the high contribution of NH3-N and PO4 
in the river. 

In fact, the Federal Land Development authorities 
are also situated close to the Johor River. This is to 
ensure that the land development authorities are 
engaged directly with the concern related to the 
river. 

 
Table 4: Goodness of fit statistic for regression of WQI 

Statistics Value 
R² 0.780 

Adjusted R² 0.777 
MSE 11.958 

RMSE 3.458 
AIC 1319.083 
SBC 1357.505 
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Table 5: Percentage of contributions 
Variable R2 Diff R2 MSE RMSE % contribution 

All Source 0.78 11.958 3.458 
L-VF1 0.779 0.001 11.974 3.46 0.1 
L-VF2 0.763 0.017 12.864 3.587 2.7 
L-VF3 0.328 0.452 36.464 6.039 71.7 
L-VF4 0.761 0.019 12.979 3.603 3.1 
L-VF5 0.752 0.027 13.425 3.664 4.4 
L-VF6 0.708 0.071 15.812 3.976 11.3 
L-VF7 0.752 0.028 13.465 3.669 4.5 
L-VF8 0.766 0.014 12.714 3.566 2.3 

Total for Diff R2 0.631 100 

3.3. �̅� and R chart for NH3-N and PO4 

The trial control limit for the x̅ and R chart of the 
Johor River Basin are shown in Fig. 2. The outcome 
illustrates that the mean concentration of NH3-N 
exceeded the UCL. There are four points in the NH3-N 
mean observations that exceed the control limits of 
the x̅chart. The four points are points 1, 2, 7 and 8 

representing 16% out of all the observations. 
Meanwhile, the R chart denotes the 1, 2, 8, 10 and 11 
as the points that positioned outside the upper 
control limit indicating 20% of the NH3-N mean 
concentration. This concludes that the process is not 
stable for the base period. 

Fig. 2: Trial control limit of (a) �̅� chart and (b) R chart for the concentration of NH3-N (mg/L) 

Based on Fig. 2, the revised control chart is 
constructed to determine the stability of the process. 
The entire out of control points is discarded in each 
chart in order to ensure that the process is stable. 
This is supported by Corbett and Pan, (2002), which 
stated that the out of control point is discarded in 
order to improve the normality so that the data will 

follow the normal distribution. Hence, the x̅ chart 
shows UCL (0.23055), LCL (-0.05025) and CEN 
(0.09015) in Fig. 3. Whereas, the R chart depicted the 
value of UCL is 0.51441, LCL is 0.0 and CEN is 
0.24333. The remaining plotted points in Fig. 3 
indicate as a stable process whereby it shows that all 
of the points (observation) are within the control 
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limits. Thus, it can be applied as the example of the 
whole operation to create the future prediction and 
measure the risk of contamination. Subsequently, 
there are two mean observations that are utilized 
from the other NH3-N data subgroup in order to 
determine either the process is stable or not. The 
results depicted that when the two observations are 

added in the process, all the points are positioned 
within the control limits (Fig. 4). Although there is a 
variation within the control limits, it is still 
considered as a natural variation of the process. 
Hence, this signifies that the mean concentration of 
NH3-N in Johor River is in a control process. 

 
 

 

 
Fig. 3: Revised Control Limit (a) �̅� chart and (b) R chart for the NH3-N concentration 
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Fig. 4: Monitoring of NH3-N concentration using the revised control limit of (a) �̅� chart and (b) R chart 

 

The control charts were then applied to PO4 in 
order to verify whether the process is stable or not 
in the trial control limit. In the x̅chart (Fig. 5a) point 
1, 2, and 3 (mean observations) exceeds the control 
limit suggesting to a possible assignable cause. This 
finding indicates that 12% of the mean 
concentrations positioned outside the upper control 
limit. Meanwhile, the R chart (Fig. 5b) denotes the 
same result where the point 1, 2, and 3 exceeded 

UCL is indicating 12% of the PO4 mean 
concentration. The result indicates that the process 
is not stable for the base period. The out of control 
point is considered as an assignable cause as it 
situated outside UCL area. The assignable cause is 
occurring when there is an undesirable variation 
which is the cause of the unexpected increase in the 
PO4 concentration. Hence, this may be the cause of 
the non-point source pollution. 

 

 

 
Fig. 5: Trial Control Limit of (a) �̅� chart and (b) R-chart for the PO4 concentration 
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Afterward, the out of control points are removed 
to ensure that the process is stable as shown in Fig. 
5. The new control limits charts were computed and
the out of control point is discarded. The UCL and
LCL are 0.09286 and -0.01437 respectively for the
x̅chart whereas the UCL and LCL are 0.19644 and 0.0
respectively for the R chart. The remaining plotted
points in Fig. 6 indicate that the process is stable; in
fact, it shows that all of the points (observation) are
within the control limits. Therefore, it can be used as
the representative of the whole process to make the
future prediction and measure the risk of pollution.
Primarily, the two mean observations from the other
PO4 concentration is added to perform the
monitoring period using the control limits that have
been constructed in Fig. 5. Within this period (Fig. 7),
the PO4 mean concentration data values of the other
subgroup illustrate that there is no out of control
points exceeding the control limits. Thus, this
signifies the positive result verifying that the PO4 

concentration is in a control process at the Johor
River Basin. Data concentration of NH3-N from
previous assessment in Fig. 7 found to be within the
UCL and LCL and only natural variation occurs. This
process is considered to be in statistical control or
stable process.

Therefore, the process performance can be 
predicted by the process capability analysis. The 

inherent variability of the process is compared with 
the specification limits in the process capability 
analysis so that the environmental performance 
potential can be detected under normal or in control 
condition (Carbett and Pan., 2002). 

3.4. Capability index for NH3-N and PO4 

Based on Fig. 8, the capability index has been 
computed to measure the risk to the environment. 
The capability index Cp is used to measure the 
potential risk of NH3-N towards the water pollution. 
The Cp value is found less than 1 which is 0.2622. 
This shows that the potential risk of NH3-N 
concentration for unacceptable water pollution is 
higher. Therefore, the result of the analysis in 
process capability shows that the process is not 
suitable in the subsequent large period of time. This 
is therefore suggested that continuous monitoring 
should be done by DOE from time to time to ensure 
that the level of NH3-N concentration in Johor river 
basin complies with the specification limit that has 
been set up which is UCL (0.3mg/L) and LCL is 
(0.1mg/L). The capability index Cp for PO4 indicates 
less than 1.00 which is 0.2637 in Fig. 9. This will 
indicate that the potential risk of PO4 concentration 
for unacceptable water pollution is also higher. 

Fig. 6: Revised Control Limit (a) �̅� chart and (b) R chart for the PO4 concentration 
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Fig. 7: Monitoring of PO4 concentration data using the revised control limit of (a) �̅� chart and (b) R chart 

 

Thus, this result implies that the process is not 
suitable in the subsequent large period of time. More 
inspection is needed to control the PO4 
concentration based on the specification limit that 
has been set up by the DOE which is USL 
(0.0075mg/L) and LSL (0.005mg/L). This 
specification limit is referred to the NWQS which has 
been set up by DOE.  

 

 
Fig. 8: Process capability analysis for NH3N concentration 

 

 
Fig. 9: Process capability analysis for PO4 concentration 
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environmetric technic. Both concentrations of NH3-N 
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water level by using Process Capability Indices. NH3-
N and PO4 are found as the main pollutants that give 
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a higher contribution towards the Johor river basin. 
According to the previous result, Johor River Basin 
has face the land alteration towards oil palm 
plantation and agricultural within the period of 
2003-2007. Based on SPC, both concentrations of 
NH3-N and PO4 has shown the risk of unacceptable 
water pollution is higher. As a result, continuous 
monitoring in the area should be done for better 
improvement of river quality in the Johor River 
Basin. The important of analysis and modeling of 
water quality need to take seriously by the authority. 
From water quality data analysis and modelling, the 
authority can focus on the most significant 
parameters which contributed to the river pollution. 
It is save time and save money budget in water 
quality sampling and lab analysis of the redundant 
parameters. The parameters which showed 
significant towards the water quality at the river 
basins through the data analysis can be used as 
reference for the authority in determining which 
parameters have to monitor at the monitoring 
stations. 
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